Statistics Help
Question: A social researcher found in a sample of 3,600 households in the state of Arkansas that the average household income is $49,500 with a population standard deviation of $4,500. Estimate the population income at a 95% and a 99% confidence interval. Edit
Answer: Ans. sample mean, x bar= 49500 , population sd(sigma)=4500 and sample size, n=3600
margin of error,e= {sigma/sqrt(n)}*z_c
z_c= critical z-value at c% confidence interval.
for 95% z_c=1.96 so, e= {4500/sqrt(3600)}*1.96=147
for 99% z_c=2.58 so, e= {4500/sqrt(3600)}*2.58=193.5
95% confidence interval=(x bar - e , xbar + e)=(49500-147, 49500+147)=(49353, 49647)(Ans.)
99% confidence interval=(x bar - e , xbar + e)=(49500-193.5, 49500+193.5)=(49306.5, 49693.5)(Ans.)
Edit
TutorTeddy.com & Boston Predictive Analytics
[ Email your Statistics or Math problems to help@teddycan.com (camera phone photos are OK) ]
Boston Office (Near MIT/Kendall 'T'):
Cambridge Innovation Center,
One Broadway, 14th Floor,
Cambridge, MA 02142,
Phone: 617-395-8864
Dallas Office (Near Galleria):
15950 Dallas Parkway,
Suite 400,
Dallas, TX 75248,
Phone: 866-930-6363