# Mensuration-28

### From Homeworkwiki

**A copper wire, when bent in the form of a square, encloses an area of 484 cm ^{2}. If the same wire**

**is bent in the form of a circle, find the area enclosed by it.**

**Solution:** Area of the square = 484 cm^{2}

Therefore, side of the square = √484 cm = 22 cm

=> Perimeter of the square = 4 x side = 4 x 22 = 88 cm

This is the length of the circumference of the circle formed by bending the wire.

Let r be the radius of this circle, then

2 Π r = 88; i.e. 2 x 22 / 7 x r = 88; r = 14 cm

Therefore, Area of the circle = Π r^{2} = (22 / 7 x 14^{2}) cm^{2} = 616 cm^{2}